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Abstract:

Background:

Oxidative  Stress  (OS)  has  been  implicated  in  the  pathophysiology  of  many  neurodegenerative  diseases.  OS  can  cause  cellular
damage that results in cell death due to overproduction of reactive oxygen species (ROS) that may play the crucial role in the disease
progression. An impaired mechanism in correlation with reduced expression of antioxidant proteins is the very common feature
among most of the age-related disorders. Various in-vitro and in-vivo studies suggest the major contribution of oxidative stress in
neurodegeneration.  Role  of  Nrf2  gene  is  well  established  as  a  neuroprotective  gene  especially  in  concern  with  stress-mediated
neurodegeneration. Nrf2 is a bZIP transcription factor that forms the heterodimer with small Maf protein and transcription factor AP1
that regulates transcription by binding to ARE which coordinates the transcription of genes involved in phase II detoxification and an
antioxidant defense that is used to protect the cell from oxidative stress.

Aim:

The current insilico study was attempted to prioritize key genes and pathway in stress-mediated neurodegeneration through network-
based analysis.

Methods:

Protein-protein interaction network was constructed and analyzed using 63 Nrf2 regulating candidate genes obtained from NCBI
database based on literature studies using STRING 10.0 database and Cytoscape v 3.6.0 software plug-in Network Analyzer. Further,
the functional enrichment analysis of identified gene was done using PANTHER GENE ONTOLOGY software and DAVID tool.

Results:

Based on network topological parameter, TP53, JUN, MYC, NFE2L2, AKT1, PIK3CA & UBC were identified as the key gene in
the network. Among them, TP53 gene was obtained as a super hub gene with the highest Betweenness Centrality (BC) and node
degree. The functional enrichment analysis was done using PANTHER GENE ONTOLOGY software and DAVID tool reveals their
significant role in neurotrophin signaling pathway, MAPK signaling pathway, cellular response to stress & in the regulation of stress.

Conclusion:

The network analysis will help in prioritizing genes in the pathway that helps in understanding the underlying mechanism of disease.
Thus, further study on these genes and their biological mechanism and pathway may, therefore, provide a potential target for the
treatment of stress-mediated neurodegeneration.
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1. INTRODUCTION

Neurodegenerative diseases are the multifactorial disorder, which results in slow progressive loss of neurons [1, 2].
The etiology of neurodegenerative diseases is still not clear; however, it results in diverse factors such as oxidative
stress,  Endoplasmic  Reticulum  (ER)  stress,  mitochondrial  dysfunction,  accumulation  of  Reactive  Oxygen  Species
(ROS),  loss  of  mitochondrial  membrane  potential,  and  ATP  depletion  [3  -  5].  The  neurological  disorders,  such  as
Alzheimer's [6], Parkinson's [7], Huntington's [8], Amyotrophic lateral sclerosis [9], Multiple Sclerosis [10], and other
processes related to pathological aging [11] are associated with accumulation of abnormal protein aggregates in and
around affected neurons. Oxidative stress and protein misfolding play a key role in the pathogenesis and progression of
neurodegenerative diseases [12] that  are characterized by fibrillar  aggregates composed of misfolded proteins [13].
Neuronal death or apoptosis can be mediated by either oxidative stress or ER stress or by both at the cellular level.
Thus, there have been continuing efforts to find out a target that can protect the cell against oxidative damage and have
the potential to treat neurodegenerative diseases.

Decrease levels of antioxidants result in contemporizing of free radicals. In the recent years, the area of research
interest focuses on the endogenous cellular anti-oxidative responses via signaling pathways involving Nrf2 [14]. Nrf2 is
a bZIP belongs to the cap'n’collar family, responsible for activating transcription mediated by Antioxidant Response
Element (ARE) in response to oxidative stress [15]. ARE is a cis-acting enhancer found in the 5′ flanking region of
many  phase  II  detoxification  and  cytoprotective  genes.  The  ARE  protects  against  oxidative  stress,  mitochondrial
dysfunction, and misfolded protein. Nrf2 activity is dependent on Kelch-like ECH-associated protein 1 (Keap 1) [16], is
a repressor protein that binds with Nrf2 that leads ubiquitination and promotes degradation by the proteasome [17]. On
oxidation of sulfhydryl groups on specific Cysteine or Phosphorylation of Keap1, the interaction between Nrf2 and
Keap is disrupted. Stabilized Nrf2 translocates into the nucleus, where it’s bind to small Maf protein and modulates
transcription  through  ARE.  The  formed  heterodimers  bind  to  the  ARE  and  coordinate  the  transcription  of  genes
involved in phase II detoxification and antioxidant defense [18]. Proteins expressed by these phase II detoxifying and
antioxidant genes are used to maintain redox balance as well as protect the cell from oxidative stress.

Activation of the Nrf2 pathway can boost the ability to buffer free radical generation as well as it also provides new
therapeutic intervention for the treatment of neurodegenerative diseases. Nrf2 has proven activity in animal models of
many neurological disorders supporting the concept of developing drug target to activate the Nrf2 pathway in the brain.

In  the  AD,  oxidative  stress  has  the  major  influence  on  Amyloid  Precursor  Protein  (APP)  processing  and  tau
modification via a sequence of critical events that leads to increased brain toxicity which results in oxidative stress [19].
The  cell  culture  studies  admit  the  toxic  effect  of  Aβ42  on  the  brain  that  leads  to  cell  death  via  apoptosis  [20].
Neurotoxic compounds, such as N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine or its active derivative, MPPT and 6-
hydroxydopamine  (6-OHDA)  exposure  lead  to  oxidative  stress,  impair  mitochondrial  respiration  and  energy
metabolism  that  results  in  neurodegeneration  [21].  In  the  AD,  blocked  Nrf2  activity  may  lead  to  the  neuronal
dysfunction and/or loss [22]. The study on substantia nigra region of human PD brain revealed confirmation of protein
glycation and nitration that leads to the oxidative damage to DNA and protein resulting from persistent oxidative trauma
[23].  Comparative  gene expression study of  neurosphere  taken from PD olfactory mucosa between PD patient  and
control reveals significant imbalance Nrf2-ARE pathway in PD patient [24]. In ALS, Nrf2 activators play important
role  in  protection  against  oxidative  stress  and  cell  death  induced  by  SOD1  mutant  protein  [24,  25].  Astrocytes
expressions of Nrf2 increase the lifespan and enhance the motor neuron survival in the spinal cord of SODG93A and
SODH46R/H48Q transgenic mouse model of ALS [26]. Thus increase in transcriptional activity of Nrf2, will decrease
the risk and delay the aging [27, 28].

On  the  other  hand,  the  activity  of  Nrf2  is  also  regulated  by  phosphorylation  through  several  kinases  such  as
phosphoinositol-3 kinase (PI3K), extracellular signal-regulated protein kinase (ERK), Protein Kinase C (PKC), and
pancreas enriched kinase (PERK) [29 - 37] that are localized in mitochondria, a major source of intracellular oxidative
stress [38]. The direct phosphorylation of Nrf2 by PERK disrupts the interaction between Nrf2 and Keap1 that leads to
nuclear  translocation  [39].  PERK kinases  activated  in  response  to  Endoplasmic  Reticulum (ER)  stress.  It  has  been
suggested that cell survival after ER stress is mediated by the increase in Nrf2-induced glutathione [40]. A major cause
of  ER  stress  is  the  deposition  of  unfolded  proteins  [41],  due  to  two  of  the  major  pathological  features  of  the  AD
(amyloid plaques and NFTs) are composed of misfolded proteins. ER stress is activated in neurons and astrocytes at
some point during AD progression. Upregulation of ER stress markers has been demonstrated in postmortem brain
tissues and cell-culture models of many neurodegenerative disorders, including PD, AD, Amyotrophic Lateral Sclerosis
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(ALS), and Huntington disease and Spinocerebellar ataxias [42]. In the AD, β-amyloid aggregation induces ER stress,
altering  ER  and  mitochondrial  morphology  and  increasing  ER  and  oxidative  stress  [43].  In  PD,  accumulation  of
misfolded  proteins  leads  to  the  up-regulation  of  UPR.  In  the  study,  ATF6a,  an  ER-membrane-bound  transcription
factor, has been shown to be activated by protein misfolding in the ER in order to protect dopaminergic neurons from
MPTP [44]. Thus, Nrf2 has proven activity in animal models of many neurological disorders supporting the concept of
developing a drug target to activate the Nrf2 pathway in the brain.

Computational methods have been used widely for the identification of potential drug targets in different disease
pathogenesis.  Genomics-based  approach  combined  with  system  biology  is  an  efficient  way  to  identify  the  set  of
functionally enriched genes from among the arrays of the potential gene in the network. The current insilico study is
performed to identify key genes and pathway against stress-mediated neurodegeneration and their functional enrichment
analysis based on protein-protein interaction network approaches.

2. METHODOLOGY

2.1. Data Collection

We  mined  sixty-three  Nrf2  regulating  gene  candidates  in  human  from  NCBI  database  on  the  basis  of  literary
studies. (Table 1) (www.ncbi.nlh.nic.gov).

Table 1. List of the sixty-three Nrf2 regulating genes in human from literature and database mining.

Gene Symbol Gene ID Gene Description
TP53 7157 tumor protein p53

BRCA1 672 DNA repair associated
AKT1 207 AKT serine/threonine kinase 1

PPARG 5468 Peroxisome proliferator-activated receptor gamma
PTEN 5728 Phosphatase and tensin homolog
CDH1 999 Cadherin 1
MYC 4609 v-myc avian myelocytomatosis viral oncogene

CDKN1A 1026 Cyclin-dependent kinase inhibitor 1A
CDH1 999 cadherin 1

PIK3CA 5290 Phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic alpha
HMOX1 3162 heme oxygenase 1

RB1 614041 RB transcriptional corepressor 1
NFE2L2 4780 Nuclear factor, erythroid 2 like 2
GSK3B 2932 Glycogen synthase kinase 3 beta

JUN 3725 Jun proto-oncogene, AP-1 transcription factor
AHR 196 aryl hydrocarbon receptor

PRKCA 5578 Protein kinase C alpha
HDAC1 3065 Histone deacetylase 1

UBC 7316 Ubiquitin C
CREBBP 1387 CREB binding protein
PRKCD 5580 Protein kinase C delta
NQO1 1728 NAD(P)H Quinone dehydrogenase 1

FBXW11 23291 F-box and WD repeat domain containing 11
SQSTM1 8878 Sequestosome 1
SUMO1 7341 Small ubiquitin-like modifier 1
HDAC2 3066 Histone deacetylase 2

SMARCA4 6597 SWI/SNF related, matrix associated, a regulator of chromatin
MAP2K1 5604 Mitogen-activated protein kinase 1
HDAC3 8841 Histone deacetylase 3

YY1 7528 YY1 transcription factor
BTRC 8945 Beta-transducin repeat containing E3 ubiquitin protein ligase
CASP3 836 Caspase 3
KEAP1 9817 kelch-like ECH associated protein 1

http://www.ncbi.nlh.nic.gov
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Gene Symbol Gene ID Gene Description
CLTC 1213 Clathrin heavy chain
ATF4 468 Activating transcription factors 4

EIF2AK3 9451 eukaryotic translation initiation factor 2 alpha kinase 3
MAFK 7975 MAF bZIP transcription factor K
MAPK9 10155 Tripartite motif containing 28
TRIM28 5598 Mitogen-activated protein kinase 7

GADD45GIP1 90480 GADD45G interacting protein 1
CUL3 6613 Small ubiquitin-like modifier 2

SUMO2 5605 Mitogen-activated protein kinase 2
MAP2K2 5583 Protein kinase C eta
PRKCH 7832 BTG anti-proliferation factor 2
BTG2 6478 Siah E3 ubiquitin protein ligase 2
SIAH2 571 BTB domain and CNC homolog 1
BACH1 6047 Ring finger protein 4
RNF4 6942 Transcription factor 20

COPS7A 50813 COP9 signalosome subunit 7A
CASP1
ENC1

834
8507

Caspase 1
ectodermal-neural cortex 1

2.2. Construction of PPI Network

We made use of STRING 10.0 (Search Tool for the Retrieval of Interacting Genes), for obtaining direct and indirect
human protein-protein interaction network [42]. The STRING database provides functional associations derived from
sources including database, experimental, co-expression, text mining, co-occurrence, neighborhood etc with the highest
confidence  score.  We constructed  network  based  on  the  highest  confidence  score  of  0.04,  which  implies  that  only
interactions with high level of confidence in network considered as reliable PPI network. Then, the PPI constructed by
STRING 10.0 was visualized by Cytoscape v 3.6.0, software used for biological network visualization, data integration
and interactive network generation [43].

2.3. Topology Analysis of PPI Network

The protein-protein interaction (PPI) network was analyzed using Cytoscape Plug-in Network Analyzer 3.6.1 based
on parameter including betweenness centrality (BC) and node degree. In the network, gene represents node and edges
represent the interaction between nodes. The degree indicates no. of edges linked to nodes, the highest the degree of
nodes represents significant biological function [44]. Betweenness centrality defines the importance of the node based
on the number of shortest paths that pass through each node. In the study, the PPI network was analyzed based on these
parameters.

2.4. Functional Enrichment Analysis

Functional enrichment analysis of nodes in cluster network was performed using PANTHER GENE ONTOLOGY
Tool [45] and DAVID (The Database for Annotation, Visualization, and Integrated Discovery Functional Annotation
Tool) [46] for understanding the biological relevance of genes in response to ER/oxidative stress. GO ontology provides
common detail framework to functionally annotated gene sets. KEGG provides information about molecular interaction
and network reaction as the pathway. PANTHER gene list analysis used statistical overrepresentation test to analyze
functionally enriched gene network in GO Biological  process.  The Statistical  overrepresentation test  uses binomial
statistical comparison. DAVID Functional Annotation tools analyze functionally enriched gene in KEGG Pathway. The
functional  enrichment  analysis  was  performed  based  on  Bonferroni  correction,  fold  enrichment  and  P-values  as  a
statistical parameter (Fig. 1).

(Table 1) contd.....
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Fig. (1). An overview of methodology.

3. RESULTS AND DISCUSSION

Network-based approach is used to construct network [47] from large gene data set that leads to the prediction of
putative candidate genes, prioritizing drug targets from the network [48]. The study focuses on the inter-relationship
between the various components using the PPI network and assists in the identification of novel genes associated with
the disease. Studies have employed a PPI network-based approach to identify the important novel gene in response to
stress-mediated  neurodegeneration  [49,  50].  We  have  taken  into  consideration  Nrf2  regulating  genes  implicated  in
response to ER and oxidative stress-mediated neurodegeneration in human.

3.1. PPI Network

Network analysis provides information about the molecular and cellular interactions of genes/protein within the
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network [51].  It  represents  entities  (nodes)  and their  functional  co-relationships  (edges).  Each data  type  contains  a
different aspect of the functional role of interested genes. In the study, we investigate protein-protein interaction using
available data and knowledge-based using STRING 10.0 database. PPI network constructed using 63 genes in STRING
as input that results in 547 interactions between 63 nodes based on parameters including database, experimental, co-
expression,  text  mining  with  the  confidence  score  (0.007),  average  degree  nodes  17.4  and  average  local  clustering
coefficient 0.621.

Fig. (2). Overview of PPI Network constructed using STRING 10.0 database. The network includes 547 edges (interaction) between
63 nodes respectively based on experiment, co-expression, text mining & co-expression with 0.007 confidence score as the analysis
parameter.

3.2. PPI Network Analysis

The  network  obtained  from  STRING  was  subsequently  analyzed  and  visualized  using  Cytoscape  3.6.0  plugin
Network Analyzer. In the study nodes with high degree and BC value taken as the key parameter to analyze the network
Fig. (2). A cut off value for BC > 0.02 and node degree >30 consider as topological parameter for gene prioritization.
TP53 (tumor protein p53), JUN (Jun proto-oncogene), UBC (Ubiquitin C), NFE2L2 (nuclear factor, erythroid 2 like 2),
PIK3CA (Phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic alpha), AKT1 (AKT serine/threonine kinase 1) and
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MYC (v-myc avian myelocytomatosis  viral  oncogene)  are  a  hub genes  in  network based on cut  off  value Table  2.
Among  these,  TP53 is  super hub  gene having  the highest  betweenness  centrality and  node  degree in  the network
(Fig. 3).

Table 2. Obtained Key Genes in Network based on Topological parameter based on the cutoff value of BC < 0.02 & Node
degree <30. Among them, TP53 is obtained as a super hub gene in the network with the highest BC value & Node degree.

Gene Node Degree Betweeness Centrality (BC)
TP53 50 0.13322847
JUN 43 0.06460235
MYC 39 0.0442512

NFE2L2 35 005194822
AKT1 34 0.02486275

PIK3CA 32 0.02158976
UBC 31 0.09984772

Fig. (3). Overview of PPI Network constructed using Cytoscape_3.6.0. Network includes 547 edges (interaction) between 63 nodes
respectively. The node with yellow and green colors represents the key genes in the network with cut off value BC > 0.02 and node
degree >30. Among key genes, the node with yellow color represents the superhub gene with highest betweenness centrality and
node degree.

3.3. Function Annotation Analysis

For the better understanding of functional annotation of key genes in the network, we run enrichment analysis by
using  PANTHER GENE ONTOLOGY  software  and  DAVID.  In  PANTHER Gene  ontology,  GO biological  process
reveals enrich genes including Regulation of response to stress, cellular response to stress Table 3. Pathway analysis
mainly includes KEGG pathway reveals that genes are commonly enriched in neurotrophin signaling pathway, MAPK
signaling pathway (Table 3).
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Table 3. The result of Functional Enrichment analysis of Key genes in PPI Network.

ID/Pathway Term P-value Associated Genes
Go_0033554 Cellular response to stress 1.89E-06 [TP53, UBC, AKT1, MYC, NFE2L2]
Go_0006950 Response to stress 4.79E-03 [TP53, UBC, AKT1, MYC, NFE2L2, PIK3CA]
Go_ 0080134 Regulation of response to stress 2.85E-03 [JUN, TP53, NFE2L2 UBC, AKT1, MYC, PIK 3CA]
KEGG04722 Neurotrophin signaling pathway 1.51E-10 [JUN, TP53, AKT1, PIK3CA]
KEGG04010 MAPK signaling Pathway 2.6E-5 [JUN, TP53, AKT1, MYC]

4. DISCUSSION & CONCLUSION

Oxidative stress and protein misfolding initiate apoptotic cascades and are known to play significant roles in the
pathogenesis and progression of neurodegenerative disease. Thus, targeting the Nrf2 pathway is becoming the most
promising  neurodegenerative  therapy  as  it  is  known  to  induce  expression  of  the  variety  of  cytoprotective  and
detoxifying genes. Serval studies reveal the potential role of Nrf2 regulating the gene in protection from stress-induced
neurodegeneration. Systems biology approaches generously contributing towards the extensive data generation which
can be fruitful for better understanding as well as better cures for the stress-induced neurodegeneration.

The main aim of the study is to identify key genes and pathway against stress-mediated neurodegeneration using
protein-protein interaction network analysis. The constructed PPI network consisted of total 547 interactions between
63 nodes. Based on network topology parameter i.e. Betweenness Centrality (BC >0.04) and node degree (> 30) TP53,
JUN, MYC, NFE2L2, AKT1, PIK3CA & UBC were identified as the key gene in the network. Among which TP53
gene was obtained as a super hub gene with highest Betweenness Centrality (BC) and node degree. Their enrichment
analysis reveals their active role in MAPK signaling pathway & neurotrophin signaling pathway.

The p53 tumor suppressor (TP53) gene regulates cell survival and death as well as cellular-redox homeostasis via
modified  expression  of  pro  and  anti-oxidant  protein  that  affect  mitochondrial  Reactive  Oxygen  Species  (ROS)
production [52]. In the network, TP53 acts as a significant node in the intracellular control pathway, in the monitoring
of  cellular  response  to  the  various  level  of  stress  cell  cycle  arrest,  replicative  cell  senescence,  DNA  repair,  etc.
Microglial  apoptosis  and microglial-induced neurotoxicity significantly reduce the treatment  of  microglia  with p53
inhibitor pifithrin-α (PFTα) revealing the neuroprotective role of microglia p53 pathways in Alzheimer disease [53].
JUN gene is the transcription factors (AP-1) that encode the c-JUN protein that regulates pro-inflammatory cytokines,
oxidative and other forms of cellular stress, and UV irradiation. The signaling pathway possesses the neural and non-
neural cell that can sense oxidative stress and activate adaptive response against stress that provides strength to the anti-
oxidant system. The low level of ROS, induce transcription factor nuclear factor erythroid-derived 2-related factor 2
(Nrf2) gene which is responsible for induction of many genes including NADPH Quinone oxidoreductase (NQO1),
glutathione S-transferase, Heme Oxygenase-1(HO-1), ferritin, etc.  [54]. Another hand, an average increase in ROS,
activates AP-1 that regulates c-JUN, c-FOS etc genes. Hence, the activation of Nrf2 and AP-1 regulating genes plays
the vital role in neural cell survival and protection against oxidative stress as Nrf2 form heterodimer with c-Jun that
binds to ARE and regulates the transcription of many phase –II detoxifying gene in anti-oxidant defense network in the
Nrf2/ARE  pathway.  Tp53  protein  possesses  an  anti-oxidant  property  that  activates  the  transcription  of  many  Nrf2
coding  genes  and  also  maintains  the  mitochondria  function  in  concern  with  ROS  production  [55].  In  response  to
activation of the p53 gene by ROS, induce the Mitogen-Activated Protein Kinases (MAPKs) pathway such as p38 and
c-Jun  N-terminal  Kinases  (JNK)  [56].  MAPKs  (JNK  &  p38)  pathway  follow  by  heme-  oxygenase  1(HO-1)  that
counteract the effect of ROS [57]. Nrf2 also interacts with and affects the Notch signaling pathway that influences cell
differentiation, survival, and apoptosis. Notch signaling pathway targets the gene expression of Nrf2 coding gene and
MAPKs signaling pathway via the Ras/MAPK pathway that leads to the activation of the defense system and protects
against internal/external stress [58]. Thus, neuron activates the genes and induces a pathway to prevent cell death and
apoptosis. The polyubiquitin gene UBC is upregulated on activation of Nrf2–Keap1 pathway under oxidative stress
condition.  UBC  is  found  near  the  Nrf2-ARE  binding  site  [59].  Ubc  is  highly  demanded  gene  under  various  stress
condition, thus providing valuable information underlying the mechanism of Ub in cellular defense pathway [60]. Nrf2
also regulate through an alternative mechanism including phosphorylation of Nrf2 by various protein kinases including
PI3K/Akt pathway. Thus, these genes play important roles in providing strength to cellular antioxidant defenses and
protect  tissues  from  harmful  damage  by  exerting  neuroprotective,  antitumor,  anti-inflammatory,  and  antiapoptotic
effects [61 - 65].
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The network-based analysis help in prioritizing key genes network from among the vast array of potential genes in
the  PPI  network.  PPI  network  analysis  is  a  key  mechanism to  understand all  the  biological  processes  from system
biology  perspective  as  well  as  also  used  in  prediction  and  evaluation  of  corresponding  treatments,  providing  a
theoretical basis for the search of novel drug targets. In the study, we identified TP53, JUN, MYC, NFE2L2, AKT1,
PIK3CA & UBC genes that play the significant role in regulating stress-mediated neurodegeneration using network-
based analysis.  While experimental  evidence also confirms the true potential  of  these gene candidates in animal &
human model. Further, the additional study is required to justify these finding and their potential therapeutic role in
disease pathway.
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