
The Open Bioinformatics Journal ISSN: 1875-0362
DOI: 10.2174/0118750362382139250502100340, 2025, 18, e18750362382139 1

RESEARCH ARTICLE OPEN ACCESS

Enhancing Early Diagnosis of Type II Diabetes
through Feature Selection and Hybrid Metaheuristic
Optimization Techniques

Sunil Upadhyay1,*  and Yogesh Kumar Gupta1

1Department of Computer Science, Banasthali Vidyapith-304022, Banasthali, Rajasthan, India

Abstract:
Introduction: Type-II Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by elevated blood
glucose levels, posing a critical global health challenge. It is largely attributed to lifestyle changes, unhealthy dietary
habits, and lack of awareness. If not diagnosed early, T2DM can lead to severe complications, including damage to
vital organs such as the kidneys, heart, and nerves. While timely and accurate diagnosis is crucial, current diagnostic
procedures are often costly and time-consuming, necessitating innovative approaches to improve early detection. This
study aimed to  enhance the early  prediction of  T2DM by leveraging advanced hybrid  metaheuristic  optimization
algorithms to improve model efficiency, accuracy, and computational time. The objective of this study is to develop a
robust  and  interpretable  hybrid  machine  learning  framework  that  combines  feature  selection  and  metaheuristic
optimization techniques to enable early, accurate, and computationally efficient diagnosis of T2DM.

Method: The methodology employed in this study involved three key steps: feature selection and refinement, model
optimization,  and  evaluation.  For  feature  selection,  SHAP  (SHapley  Additive  exPlanations)  was  integrated  with
Support Vector Machines (SVMs) to identify the most significant predictive features. This was followed by Particle
Swarm Optimization  (PSO),  which  was  utilized  for  feature  refinement,  ensuring  a  concise  yet  highly  informative
feature set. In the model optimization phase, Genetic Algorithms (GAs) were applied to optimize the hyperparameters
of machine learning models, including Artificial Neural Networks (ANNs), Random Forest (RF), and SVM. Bayesian
Optimization  (BO)  was  then  employed  to  further  refine  these  hyperparameters,  enhancing  overall  model
performance.  Finally,  the  models  were  evaluated  using  key  classification  metrics,  such  as  accuracy,  Receiver
Operating  Characteristic  (ROC)  curves,  and  F1  scores,  to  ensure  the  robustness  and  reliability  of  the  proposed
approach.

Result: Among all models, the hybrid Random Forest model incorporating SHAP, PSO, GA, and BO demonstrated
superior performance with 99.0% accuracy, a 94.8% F1-score, and an AUC of 1.00. The model also maintained high
performance on the PIDD dataset, confirming its robustness and generalizability.

Discussion: The hybrid metaheuristic framework significantly improved prediction accuracy and efficiency for early
T2DM diagnosis  compared  to  conventional  models.  These  findings  support  the  growing  evidence  for  integrating
feature selection and optimization in clinical prediction. However, the study is limited by the use of publicly available
datasets and lacks clinical validation, which should be addressed in future work.

Conclusion: The proposed hybrid metaheuristic framework offers a reliable and scalable solution for early diabetes
prediction. It advances the application of AI in healthcare by improving diagnostic accuracy and supporting timely
medical interventions. Future work should include clinical deployment, real-time validation, and dataset expansion for
greater generalizability.

Keywords:  Hybrid  model,  Metaheuristic  optimization,  Machine learning,  SHapley  Additive  exPlanations  (SHAP),
Particle Swarm Optimization (PSO), Genetic algorithm.
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1. INTRODUCTION
Diabetes  Mellitus  Type  II  is  a  long-lasting  metabolic

disease characterized by high glucose in the blood due to
the  body  not  working  correctly  with  insulin  or  does  not
produce enough insulin [1]. Due to its rapid rise, which is
mostly caused by dietary changes, physical inactivity, and
rising  obesity  rates,  this  condition  has  become  a  major
global  health  challenge.  According  to  a  World  Health
Organization  report,  millions  of  people  worldwide  suffer
from this disease [2]. Many health-related issues, such as
cardiovascular  disease,  neuropathy,  and  kidney  disease,
are  significantly  increased  by  these  complications  [3].
T2DM  has  been  a  global  health  concern  over  the  past
three decades. The diabetes population went up from 108
million in 1980 to 800 million in 2024, and was a cause of
death  for  1.5  million  people  in  2019  [4,  5].  Genetic
predisposition,  lifestyle  decisions,  levels  of  physical
activity,  and  dietary  practices  all  impact  the  condition.
Early detection lowers the risk of complications like vision
loss  and  heart  or  kidney  disease  by  enabling  prompt
intervention.  Early  diagnosis  is  also  more  cost-effective
and significantly improves the quality of life for affected
individuals. Timely and precise assessment of this disease
is  critical  for  mitigating  risks  and  enabling  appropriate
interventions.  A  delayed  diabetes  diagnosis  may  require
additional tests, such as random plasma glucose, glycated
hemoglobin (A1C), and fasting plasma glucose. However,
many individuals postpone these tests until  they develop
symptoms  like  polyuria,  polydipsia,  and  polyphagia  [6].
Conventional diagnostic techniques, such as oral glucose
tolerance  testing  and  fasting  glucose  testing,  are
frequently expensive, slow, and prone to errors, especially
in the earlier stages of the disease. Machine learning (ML)
and  advanced  computational  methods  have  appeared  as
promising solutions to improve the accuracy and efficiency
of  diabetes  prediction  models  [7].  ML can  process  large
datasets  rapidly,  enabling  prior  prognosis  and
management  of  diabetes  [8].  Patients  can  now  monitor
their  blood  sugar  levels  in  real-time  using  devices  like
continuous  glucose  monitoring  devices,  which  improve
diabetes  care  and  quality  of  life.  Researchers  are
leveraging  machine  learning  models  to  analyze  datasets
and improve  the  accuracy  of  diabetes  prognosis  [9].  ML
applications in healthcare range from robotic  surgery to
prescription  drug  recommendations.  By  using  feature
selection and metaheuristic optimization techniques, this
research  focuses  on  improving  the  prediction  of  type  II
diabetes. In ML, feature selection is one of the key steps,
especially  when  working  with  high-dimensional  medical
datasets. It helps in data reduction while keeping the most
pertinent  data,  which  improves  the  interpretability  and
efficacy  of  models.  In  this  research,  SVC  assists  in  the
feature selection process, and SHAP values and PSO are
utilized  to  evaluate  feature  importance.  Metaheuristic
techniques like GA are used to balance and optimize the
parameters  of  models,  such  as  SVM,  RF,  and  ANN,  to
enhance model performance further. These methods make
it  possible  to  explore  a  larger  search  space  for
hyperparameter tuning, which produces more precise and

effective  predictions.  Furthermore,  hyperparameters  are
refined further using Bayesian optimization to guarantee
the best  possible  model  performance.  A  new method for
type  II  diabetes  predictive  modeling  is  introduced  by
combining  feature  selection  and  metaheuristic
optimization.  The  hybrid  metaheuristic  optimization
model,  integrating  random  forest  with  SHAP,  PSO,  GA,
and  Bayesian  optimization,  demonstrated  superior
performance  and  achieved  the  highest  accuracy.
According  to  this  study's  comparative  analysis  using
metrics,  such  as  ROC  and  accuracy  scores,  the  model
appeared  as  the  most  effective  strategy,  offering
unparalleled  accuracy,  robustness,  and  computational
efficiency.  The  findings  of  this  study  help  in  creating  a
scalable and trustworthy medical support system for early
T2DM diagnosis.

The  structure  is  such  that  a  literature  review  is
provided  in  Section  2,  dataset  and  pre-processing  are
covered in Section 3, feature selection and hybrid model
construction  are  covered  in  Section  4,  results  and
performance evaluation are provided in Section 5, and the
findings are concluded with future research directions in
Section 6.

2. LITERATURE REVIEW
Diabetes is a global health concern, and in many parts

of the world, more than 70% of the population suffers from
diabetes.  To  predict  and  manage  diabetes  symptoms,
many researchers have made use of machine learning and
data mining methods. Pima Indians Diabetes Dataset is a
dataset  widely  used  in  diabetes  prediction  in  scientific
research. Researchers have explored many methods, such
as  machine  learning,  neural  networks,  hybrid  methods,
and  data  mining,  to  forecast  diabetes  better.  ANN  is
among  the  methods  widely  used  in  diabetes  prediction
models  [10].  For  instance,  Swapna  et  al.  [11]  made
diabetes  predictions  based  on  electrocardiogram
information with the assistance of deep learning. Feature
extraction in their study was dependent on a convolutional
neural network (CNN), and an SVM was utilized later to
fine-tune features. Their system was extremely accurate,
with  a  rate  of  95.7%.  In  addition,  fuzzy  cognitive  maps
were  applied  in  knowledge-based  systems  to  model
diabetes-related  knowledge,  consequently  improving  the
prediction  ability  in  these  models.  Rastogi  et  al.  [12]
explored diabetes prediction using data mining techniques
by applying Random Forest, SVM, logistic regression, and
Naïve Bayes on a real dataset.  It  was found that logistic
regression  achieved  the  highest  accuracy  of  82.46%  in
comparison to other models. Sisodia et al. [13] made use
of  the  Pima Indians  Diabetes  Dataset  in  designing three
machine  learning  models,  namely  decision  tree,  support
vector machine, and naive Bayes, to classify diabetes with
naive  Bayes  having  a  classification  rate  of  76.3%.  Data
mining was used in a research paper presented by Wu et
al.  [14]  to  identify  risk  factors  for  developing  type  2
diabetes with a classification rate of 95.42%. The results
of  their  experiments  were  found  to  be  sensitive  to  the
initial  seed point value,  which had a direct effect on the
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outcomes. Zeinalnezhad et al. integrated data mining and
meta-heuristic techniques to predict early readmission of
diabetic  patients  within  30  days  of  discharge  using  a
dataset from the UC Irvine Machine Learning Repository
[15].  They  employed  classification  algorithms,  including
Random  Forest,  neural  network,  and  support  vector
machine,  with  a  Genetic  Algorithm  (GA)  for  hyper-
parameter  tuning.  Their  results  demonstrated  that  GA-
SVM improved prediction accuracy by 1.12%, highlighting
the  potential  of  optimized  models  in  managing  diabetic
patient  readmissions.  Dharmarathne  et  al.  introduced  a
self-explanatory  interface  for  diabetes  diagnosis  using
machine learning, incorporating four classification models:
Decision  Tree,  K-Nearest  Neighbor,  Support  Vector
Classification, and Extreme Gradient Boosting (XGB) [16].
SHAP  was  utilized  to  interpret  model  predictions,  with
XGB demonstrating the highest accuracy. The integrated
interface  not  only  predicted  diabetes  but  also  provided
transparent explanations, enhancing user awareness and
supporting  medical  professionals  in  decision-making.
Mumjudar and Vaidehi were interested in the prediction of
diabetes  using  machine  learning  classifiers.  Logistic
regression emerged as the best-performing model  based
on classification metrics without pipelining [17]. When a
pipeline  was  utilized  to  control  and  automate  workflow,
the  AdaBoost  classifier  outperformed  other  models  in
diabetes prediction, especially in the Pima Indian Diabetes
Dataset.  Nicolucci  et  al.  constructed  diabetes
complications  prediction  models  based  on  electronic
medical record information [18]. Their supervised machine
learning model trained on data on 148 patients over a 15-
year observation horizon in 23 centers was able to identify
high-risk  diabetes  complications  successfully.  Ganie  and
Malik explored the prediction of diabetes independent of
insulin based on life and biological predictors [19]. They
made  a  machine  learning  ensemble  with  synthetic
minority oversampling (SMOTE) to address a dataset with
a  sample  size  of  1,939  and  11  life  and  biological
predictors. Their study identified urination as a prominent
feature  in  the  prediction  of  diabetes  independent  of
insulin, with a bagged decision tree classifier performing
better than other models. Bhat et al. reported a diabetes
prediction and risk analysis  using the SMOTE technique
on the PIMA Indian Diabetes Dataset [20]. They identified
diabetes  risk  contributors  like  blood  pressure,  glucose
level,  and diabetes pedigree function,  with weight  being
the  least  contributor.  Decision  tree  was  the  best
performing  among  the  classifiers  used,  with  precision
(96%), accuracy (91%), recall (92%), and F1-score (94%).
Since more than 60% of diabetic patients are unaware of
their  conditions,  early  diagnosis  is  important  to  reduce
laboratory  visits  and  in-hospital  admissions.  Singh  et  al.
analyzed  the  impact  of  data  preparation  on  machine
learning  algorithms  for  type  2  diabetes  prediction  using
two  datasets:  LS  (locally  developed)  and  PIMA  (from
Kaggle) [21]. They evaluated five machine learning models
with eight scaling strategies, observing that PIMA dataset
accuracy  improved  from  46.99–69.88%  (without
preprocessing) to 77.92% (with scaling). Similarly, Arvind
et  al.  [22]  explored  the  integration  of  feature  selection

techniques with machine learning algorithms for diabetes
classification by applying SVM, Random Forest, KNN, and
Naïve  Bayes  after  genetic  algorithm-based  feature
selection.  Their  proposed  ensemble  model  achieved  a
classification  accuracy  of  93.82%,  demonstrating  its
effectiveness in improving prediction accuracy. In another
research, Reza et al. proposed two stacking-based models
for diabetes classification using the PIMA Indian Diabetes
dataset,  simulated data,  and locally  collected healthcare
data  [23].  They  combined  classical  and  deep  neural
network  stacking  ensemble  methods,  achieving  the
highest  accuracy  of  95.50%  with  a  5-fold  CV  on  the
simulation study. Their findings highlight the effectiveness
of  stacking  ensembles  in  enhancing  diabetes  prediction
accuracy  and  robustness.  Similarly,  Upadhyay  et  al.
developed a web-based hybrid machine-learning model for
diabetes prediction using a dataset from a reputed Indian
hospital  [24].  They  proposed  two  hybrid  models:  one
combining  Support  Vector  Machine  with  bootstrap
bagging  and  Reduced  Error  Pruning  (SVMBBREP)  and
another  integrating  SVM  with  a  genetic  algorithm,  with
feature selection performed using the MRMR method. The
SVMBBREP  model  achieved  the  highest  accuracy  of
99.67%  and  was  incorporated  into  a  web-based  system,
enabling  real-time  diabetes  risk  assessment  and  aiding
early detection and management. Patile et al. proposed an
ML-based framework, Improved Ensemble Learning with
Dimensionality Reduction Model (IELDR), for early type 2
diabetes prediction [25]. The IELDR model, integrating an
autoencoder-based  feature  extraction  method  with
ensemble learning,  was evaluated using the LS_diabetes
dataset  and  validated  on  the  Diabetes_2019  and  PIMA
diabetes datasets. The model achieved a high accuracy of
98.67%, outperforming other datasets, and demonstrated
its  effectiveness  in  predicting  diabetes  risk  based  on
lifestyle patterns, aiding in early diagnosis and prevention.
Nadesh and Arivuselvan developed a deep neural network
and reported a performance level of 94.16% by employing
feature reduction and feature selection to remove features
with  a  potential  negative  contribution  to  the  execution
time.  Feature  importance  was  determined  with  decision
trees  and  random  forest  models  [26].  Spearman’s
correlation was adopted by Olisah et al. to select the most
significant  features  in  the  PIMA  dataset  in  a  quest  to
improve the performance level of their diabetes prediction
system  [27].  However,  it  was  found  that  Spearman’s
correlation was not efficient in treating nonlinear relations
and multiple feature combinations. Ejiyi et al.  addressed
this  limitation  by  using  the  SHAP  algorithm  to  assess
feature importance for  diabetes prediction,  achieving an
accuracy  of  94%  on  the  limited  dataset  with  eight
attributes [28]. This highlights the critical role of feature
selection  in  improving  prediction  models.  Singh  et  al.
developed  a  novel  predictive  model  for  diabetes,
integrating advanced techniques to improve accuracy and
robustness [29]. Their approach utilized IDBMI for missing
value imputation, MFLOF for outlier detection, ASENN for
class  balancing,  and  a  Multi-Model  FusionNet  Classifier
for enhanced prediction. Validated on NHANES and PIMA
Indian Diabetes datasets,  the model achieved high accu-
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racy  (97.88%  and  97.95%,  respectively),  demon-strating
its effectiveness in addressing key challenges in diabetes
detection (Table 1).

Due to its increasing prevalence, significant economic
impact, and the enormous amount of data generated by its
various  forms  and  related  complications,  diabetes  is
predicted to become a major focus of future global health
research.  This  emphasizes  the  necessity  of  effective
techniques  for  handling  and  examining  sizable  datasets
with lots of features. By using feature selection techniques
and  employing  advanced  metaheuristic  optimization
techniques,  our  study  aimed  to  increase  prediction
accuracy.  A  thorough  method  was  designed  for  big
datasets to overcome the drawbacks mentioned in earlier

studies and allow for the early diagnosis of T2D. Particle
Swarm Optimization  and SHAP were  utilized  for  feature
selection  after  pre-processing  the  data.  By  keeping  only
the most pertinent features, computational complexity was
decreased,  and  productivity  was  increased.  Afterward,
hybrid  models  were  created  by  combining  machine
learning  methods  with  genetic  algorithms  and  Bayesian
optimization  to  optimize  hyperparameters  before
prediction.  After  a  thorough  evaluation  of  these  models,
the  algorithm  with  the  best  performance  was  chosen
based on important performance indicators. The objective
of this approach was to enhance the accuracy, reliability,
and  computational  efficiency  of  the  type  II  diabetes
prognosis  systems  (Table  2).

Table 1.  Comparison of  accuracy (%) of  different classification algorithms using different feature selection
techniques.

Authors/Refs. Classifications Model Feature Selection Methods Accuracy (%)

Ananya et al. [30] SVM, RF Step forward and backward 81.4
Astuti et al. [31] ANN, NB BWOA 70
Amit et.al [32]. LR, KNN, NB, RF, SVM Fast correlation-based filter feature selection 97.81

Saxena et al. [33] DT, KNN, RF RF 79
Rubaiat et al. [34] ANN RF 77

Tuan et al. [35] SVM, DT, KNN, NBC RFC, LR Wrapper-based feature selection utilizing Grey Wolf Optimization and an Adaptive Particle
Swam Optimization 96

Note: FCBF: Fast Correlation-Based filter, BWOA: Binary Whale Optimization Algorithm, ANN: Artificial Neural Network, GA: Genetic Algorithm, RF: Random
Forest, DT: Decision Tree, KNN: K Nearest Neighbour, SVM: Support Vector Machine.

Table 2. Comparison of previous works with findings of this study.

Authors/Refs. Data-processing Feature selection
methods Classification models

Optimization
method to find

the best
parameter

Hyperpara
mater

optimization
Hybrid
model

Alam et al. [36] Median, binning PCA RF, clustering, ANN, and
association rule NA NA NA

Kaur et al. [37] KNN imputation, outlier
removal Boruta method SVM (Linear), SVM- RBF,

KNN, and ANN NA NA NA

Zou et al. [38] NA PCA, mRMR DT, RF, ANN NA NA NA

Ahmed et al. [39] Inter quartile range (IQR)
and label encoding

Correlation and chi-
square

DT, NB, KNN, RF, GB, LR,
and SVM NA NA NA

Selim et al. [40] Min-max normalization Data reduction unit Gradient boosting machine GBM-DRU NA Ensemble

Zhang et al. [41] Mean, variance, median,
quartile

Pearson correlation
coefficient RF, bagging, and boosting Harmony search

algorithm NA Hybrid

Ahmed et al. [42] Pearson correlation, mutual
information, SMOTE

Standardization, min
max scaler, robust

scaler

KNN, DT, RF, NB, LR, SVM,
Ada boost, Extra Tree,

Gradient boosting, LDA,
ANN

NA NA Ensemble
learning

Tanti et al. [43] Mean, IQR PCA DT, GB, SVM, KNN, NB, RF Cross-validation NA NA
Hossain et al. [44] Median, outlier mRMR, RFE LR, RF, SVM, KNN, XGB NA NA Hybrid

Gollapalli et al. [45] Min max scaler, KNN
imputer, SMOT Correlation SVM, RF, DT, KNN NA NA Ensemble

Ganie et al. [46] Outlier, SMOT Correlation Bagging, boosting, and
voting NA NA Bagging

Jamal et al. [47] Mean, median PCA DT, RF, stochastic gradient
boosting Cross-validation NA NA

Our Research Label encoding, correlation SHAP, PSO SVM, RF, ANN GA BO Hybrid
Note: RF: Random Forest, ANN: Artificial Neural Network, SVM (Linear)- Support Vector Machine Linear, SVM-RBF: Support Vector Machine- Radial-Based
Function, KNN: K Nearest Neighbour, ANN: Artificial Neural Network, DT: Decision Tree, mRMR: Minimum Redundancy Maximum Relevance, NB: Naïve
Bayes, GB: Gradient Boosting, LR: Logistic Regression, LDA: Linear Discriminant Analysis, RFE: Recursive Feature Elimination, XGB: Extreme Gradient
Boosting, SMOT: Synthetic Minority Oversampling Techniques, BO: Bayesian Optimization.
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3. MATERIALS AND METHODOLOGY

3.1. Data Collection
The  dataset  (Tables  3-6)  used  in  this  study,  sourced

from a Kaggle repository,  was comprised of  520 records
with  17  attributes,  where  16  features  were  categorical,
and  “age”  was  the  only  numeric  variable.  The  target
variable,  “class,”  indicated  whether  an  individual  has
diabetes. The dataset included key attributes, such as age,
sex,  polyuria,  polydipsia,  sudden  weight  loss,  weakness,
polyphagia,  genital  thrush,  visual  blurring,  itching,
irritability,  delayed  healing,  partial  paresis,  muscle
incoordination,  alopecia,  obesity,  and  class,  providing  a
comprehensive  representation  of  diabetes-related
symptoms. While the dataset offers valuable insights,  its
relatively  small  size  may  impact  its  generalizability.  To
enhance  robustness,  the  Pima  Indians  Diabetes  dataset
was  incorporated  for  external  validation,  allowing  for  a
cross-dataset  performance  evaluation  across  diverse
population groups. Stratified k-fold cross-validation (k=5)
was also applied to improve model reliability and minimize
dataset-dependent  biases.  To  further  strengthen  the
analysis,  summary  statistics  and  feature  correlation
analysis were carried out. They provided deeper insights
into  the  dataset’s  structure  and  relationships  among
features,  ensuring  a  more  rigorous  assessment  of  the
proposed  hybrid  metaheuristic  optimization  model.

3.2. Sample Size Determination
The  adequacy  of  the  sample  size  in  this  study  is

justified  using  stratified  k-fold  cross-validation  (k=5),
effect  size  considerations,  and  performance  consistency
analysis.  Since  the  study  relies  on  publicly  available
benchmark  datasets,  the  Kaggle  Diabetes  Dataset  (520
records,  17  features)  and  the  Pima  Indians  Diabetes
Dataset (768 records, 8 features), a formal power analysis
was not  conducted.  However,  the use of  stratified k-fold
cross-validation  ensures  that  the  dataset  is  effectively

utilized, reducing variability in performance metrics and
enhancing reliability. Additionally, the dataset size aligns
with  prior  studies  in  machine  learning-based  diabetes
prediction, where a moderate to high effect size (Cohen’s
d)  is  expected  due  to  the  strong  relationship  between
diabetes  risk  factors  and  classification  outcomes.
Furthermore,  the  performance  consistency  across
validation splits was analyzed to confirm that the results
were not overly dependent on specific dataset partitions.
The  minimal  variance  in  accuracy,  precision,  recall,  and
AUC across different folds indicated that the dataset size
was sufficient for statistical reliability. Future studies can
further strengthen statistical justification by conducting a
formal  power  analysis  by  applying  bootstrapping
techniques  and  validating  results  on  larger,  real-world
clinical  datasets  to  improve  generalizability.

3.3.  Clinical  Relevance  of  AI-Based  Diabetes
Prediction

In clinical  practice,  a critical  question is  whether AI-
based diagnostic methods provide a significant advantage
over traditional tests like fasting blood sugar and HbA1c,
which are widely used for diabetes detection. While these
conventional  tests  are  effective,  they  primarily  diagnose
diabetes  at  later  stages,  when  symptoms  have  already
developed.  In  contrast,  AI-driven  models,  such  as  the
proposed hybrid metaheuristic approach, enable the early
identification  of  high-risk  individuals  before  symptoms
appear.  This  proactive  approach  supports  preventive
healthcare strategies, allowing for early intervention and
potentially  reducing  long-term  diabetes-related  comp-
lications.  Additionally,  AI  models  have  the  capability  to
analyze  large-scale  patient  data  and  detect  hidden
patterns that might not be evident through conventional
testing. By integrating AI with clinical diagnostics, health-
care  professionals  can  enhance  risk  stratification  and
ensure that  individuals at  higher risk receive timely and
targeted  interventions. Rather than  replacing traditional

Table 3. Dataset description used for research.

Feature Name Description Data Type
Age Age of the individual Integer
Sex Gender of the individual Categorical

Polyuria Frequent urination Categorical
Polydipsia Excessive thirst Categorical

Sudden Weight Loss Unexpected weight loss Categorical
Weakness Persistent weakness or fatigue Categorical
Polyphagia Excessive hunger Categorical

Genital Thrush Fungal infection in the genital area Categorical
Visual Blurring Blurry vision Categorical

Itching Persistent skin itching Categorical
Irritability Increased irritability Categorical

Delayed Healing Slow healing of wounds Categorical
Partial Paresis Muscle weakness or partial paralysis Categorical

Muscle Steadiness Lack of muscle control Categorical
Alopecia Hair loss Categorical
Obesity BMI indicates obesity Categorical

Class (Target) Diabetes diagnosis (Positive/Negative) Categorical
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Table 4. Statistical summary of features.

- Age Gender Polyuria Polydipsia
Sudden
Weight

Loss
Weakness Polyphagia Genital

Thrush
Visual

Blurring Itching Irritability Delayed
Healing

Partial
Paresis

Muscle
Stiffness Alopecia Obesity Class

Count 520 520 520 520 520 520 520 520 520 520 520 520 520 520 520 520 520
Mean 48.03 0.63 0.50 0.45 0.42 0.59 0.46 0.22 0.45 0.49 0.24 0.46 0.43 0.38 0.34 0.17 0.62
Std 12.15 0.48 0.50 0.50 0.49 0.49 0.50 0.42 0.50 0.50 0.43 0.50 0.50 0.48 0.48 0.38 0.49
Min 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 39.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 47.50 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.75 57.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00
Max 90.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5. Pima indians diabetes dataset description.

Feature Name Description Data Type
Pregnancies Number of times pregnant Integer

Glucose Plasma glucose concentration (mg/dL) Numeric
Blood Pressure Diastolic blood pressure (mm Hg) Numeric
Skin Thickness Triceps skinfold thickness (mm) Numeric

Insulin 2-Hour serum insulin (mu U/ml) Numeric
BMI Body Mass Index (kg/m2) Numeric

Diabetes Pedigree Diabetes pedigree function (Genetic Risk Factor) Numeric
Age Age of the individual (years) Integer

Outcome (Target) Diabetes diagnosis (0 = No, 1 = Yes) Categorical

Table 6. PIMA dataset statistical summary of features.

Feature Count Mean Std Dev Min 0.25 0.50 0.75 Max
Pregnancies 768 3.85 3.37 0 1.00 3.00 6.00 17.00

Glucose 768 120.89 31.97 0 99.00 117.00 140.25 199.00
Blood Pressure 768 69.11 19.36 0 62.00 72.00 80.00 122.00
Skin Thickness 768 20.54 15.95 0 0.00 23.00 32.00 99.00

Insulin 768 79.80 115.24 0 0.00 30.50 127.25 846.00
BMI 768 31.99 7.88 0 27.30 32.00 36.60 67.10

Diabetes Pedigree Function 768 0.47 0.33 0.078 0.24 0.37 0.63 2.42
Age 768 33.24 11.76 21 24.00 29.00 41.00 81.00

Outcome (Target) 768 0.35 0.48 0 0.00 0.00 1.00 1.00

diagnostic  tests,  AI  serves  as  a  complementary  tool  that
improves  decision-making  in  diabetes  screening,  parti-
cularly in large-scale population studies and personalized
medicine applications.

3.4. Data Pre-Processing
The data pre-processing phase ensures that the dataset is

clean, balanced, and optimized for machine learning models.
Since  no  missing  values  were  found,  imputation  was  not
required.  Categorical  variables  were  converted  into
numerical representations using label encoding to facilitate
model  training.  To  address  class  imbalance,  the  Synthetic
Minority  Over-sampling  Technique  (SMOTE)  was  applied,
generating  synthetic  samples  for  the  minority  class  to
enhance model performance and prevent biased predictions.
Feature  scaling  was  performed  using  min-max  scaling  to
normalize  the  data  within  the  range  of  [0,1],  ensuring
consistency across features. Additionally, correlation analysis
using the  Pearson correlation  coefficient  was  conducted to
identify  and  remove  highly  correlated  features,  thereby
reducing  redundancy  and  improving  model  efficiency.  The

correlation with diabetes (Fig. 1) indicates that polyuria and
polydipsia  are  the  most  significant  markers  of  diabetes.
Conversely, features, such as gender and alopecia, appear to
be  weaker  indicators  and  may  negatively  impact
classification  accuracy.  For  the  PIMA  Indian  Diabetes
dataset,  similar  pre-processing  steps  were  applied  to
maintain consistency. Since the dataset primarily consisted
of  numerical  values,  min-max  scaling  was  utilized  to
standardize  feature  distributions.  Class  imbalance  was
addressed using SMOTE to ensure an equal representation of
positive  and  negative  diabetes  cases.  Correlation  analysis
was  also  performed  to  eliminate  redundant  features,
ensuring that only the most relevant attributes were retained
for classification. These pre-processing steps enhanced data
quality,  leading  to  better  generalization  and  improved
performance  of  the  machine  learning  models.

3.4.1.  Synthetic  Minority  Over-sampling  Technique
(SMOTE)

Class  imbalance  is  a  common  issue  in  medical  data-
sets, where the number of positive (diabetic) and negative
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(non-diabetic)  cases  is  significantly  different.  This  imba-
lance  can  lead  to  biased  model  predictions,  where  the
classifier favors the majority class. To address this issue,
the Synthetic Minority Over-sampling Technique (SMOTE)
was  implemented  in  this  study.  Instead  of  merely  dupli-
cating instances of the minority class, SMOTE generates
synthetic samples by interpolating feature values between

existing minority class instances. This approach helps the
model  learn  meaningful  patterns  from  both  classes,
improving  classification  performance  while  preventing
overfitting. By integrating SMOTE, the model can better
distinguish  between  diabetic  and  non-diabetic  cases,
reducing bias and enhancing predictive performance (Fig.
2).

Fig. (1). Correlation with diabetes.

Fig. (2). SMOTE Outcome: Before and after.
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3.5. Feature Selection
A  crucial  phase  in  data  analysis  is  feature  selection.

Choosing the most relevant features from the initial set by
predetermined  evaluation  criteria  entails  lowering  the
dimensionality  of  a  dataset.  By  removing  unnecessary
features,  this  procedure  streamlines  the  dataset  while
preserving  crucial  information.  The  set  of  attributes  N
includes n attributes,  {n1,n2,n3,…,nk} [48, 49].  It  is the
goal  of  feature  selection  to  select  k-relevant  attributes
from  the  set.  Subset  generation  is  the  first  of  the  three
required procedures in the feature selection process. It is
the  process  of  constructing  unique  subsets  of  attributes
from the given set.  The evaluation phase follows, during
which  each  subset's  quality  is  evaluated  based  on
predetermined  evaluation  criteria  to  ascertain  its
significance and relevance. When an ideal subset is found,
the search is stopped using stopping rules, and the chosen
features  are  then  validated  to  make  sure  they  are
appropriate  for  the  predictive  model.  This  ends  the
process. By ensuring that only the most relevant features
are used, this hierarchical method enhances the accuracy
and productivity of the ensuing predictive model.

3.5.1. Features Selection by SHAP with SVM
Support  Vector  Machines,  in  conjunction with SHAP,

allow for  efficient  feature selection by locating the most
important dataset features. To maximize class separation,
a hyperplane is optimized before an SVM model is trained
on  all  features.  Kernel  SHAP,  which  measures  each
feature's  contribution  to  predictions,  is  then  used  to
calculate  SHAP  values  [50].  A  global  ranking  of  feature
importance is obtained by aggregating these values. The
SVM model  is  retrained  using  the  top  k  features,  which
lowers  dimensionality  and  improves  computational
efficiency  without  compromising  accuracy  [51].  This
integration  highlights  important  aspects  of  decision-
making  and  produces  an  accurate,  interpretable  model.

Mathematical notation is presented in Eq. (1), which is
as follows:

(1)

Where: ϕi(f, x) is the SHAP value of the feature i for the
prediction f (x), N is the set of all features, S is a subset of
the features that exclude the feature i, | S |! is the factorial
of the size of the subset S, ∣N∣! is the factorial of the total
number  of  features,  f(S∪  {i})  is  the  model's  prediction
using  the  features  in  S  plus  feature  i,  and  f(S)  is  the
model's  prediction  using  only  the  features  in  S.

Feature selection with SHAP involves calculating the
mean absolute SHAP values across all training examples,
providing  a  global  ranking  of  feature  importance
influencing  the  model's  predictions  (Eq.  2).

(2)

Where n is the total number of training instances, ϕi(f,

xj) is the SHAP value of feature i, for instance xj, and   f(xj)
is the model's prediction, for instance xj.

According to the SHAP value displayed in Fig. (3), the
top  10  features  selected  include  polyuria,  polydipsia,
gender,  partial  paresis,  itching,  age,  genital  thrush,
irritability,  sudden  weight  loss,  visual  blurring,  and
weakness.

3.5.2. Particle Swarm Optimization Feature Selection
Method

Particle  Swarm  Optimization,  which  finds  the  most
relevant  features  in  a  dataset,  was  inspired  by  the
collective behaviour of flocking birds. PSO effectively finds
the  best  feature  subsets  to  enhance  the  productivity  of
models,  and it  works especially  well  in  high-dimensional
spaces [52]. Each  particle  in  the  process  represents  a
possible feature subset encoded as a binary vector (1 for
selected  features,  0  otherwise),  and  the  population  is
initialized at  random at  the  start  of  the  process.  Fitness
scores  obtained  from  model  metrics,  such  as  AUC,  are
used  to  assess  particles.  Particles  explore  the  feature
space  and  migrate  toward  the  optimal  subset  for  the
optimal  model's  efficiency  by  iteratively  updating  their
position  as  well  as  their  velocity  using  their  optimal
position individually as well as the optimal position of the
swarm (Eq. 3) [53].

(3)

Where, vi(t + 1) is the velocity of particle i at time t +
1,  w  is  the  inertia  weight  to  control  the  exploration  and
exploitation  balance,  c1,  c2  is  the  cognitive  and  social
learning coefficients, controlling the influence of personal
and  global  best  positions,  r1,  r2  is  the  random  value
between  0  and  1,   pbest,i  is  the  personal  best  position  of
particle  i,  gbest  is  the  best  global  position  among  all
particles,  and  xi(t)  is  the  current  position  of  particle  i.

The  position  (selected  features)  of  each  particle  is
updated  based  on  the  updated  velocity  (Eq.  4).

(4)

A  sigmoid  function  is  typically  applied  to  convert
continuous  velocities  to  binary  decisions  for  feature
selection  (Eq.  5).

(5)

The new position is determined by comparing S(vi(t +
1)) to a random number, with values closer to 1 leading to
the feature being selected.

The process repeats for a fixed number of iterations or
until  convergence is achieved (i.e.  when the particles no
longer improve their positions significantly).

The top 10 features selected include gender, polyuria,
polydipsia,  weakness,  polyphagia,  itching,  irritability,
delayed  healing,  partial  paresis,  and  muscle  stiffness.

𝜙𝑖(𝑓, 𝑥) = ∑
∣𝑆∣!⋅(∣𝑁∣−∣𝑆∣−1)!

∣𝑁∣!𝑆⊆𝑁∖{𝑖} [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]

Mean SHAP value for feature 𝑖 =
1

𝑛
∑ ∣𝑛

𝑗=1 𝜙𝑖(𝑓, 𝑥𝑗)

𝑣𝑖(𝑡 + 1) = 𝑤 ⋅ 𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝best,𝑖 − 𝑥𝑖(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔best − 𝑥𝑖(𝑡))

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)

𝑆(𝑣𝑖(𝑡 + 1)) =
1

1+𝑒−𝑣𝑖(𝑡+1)
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Fig. (3). SHAP value for feature selection.

3.6. Framework of the Proposed Methodology
The  proposed  framework  consists  of  six  key  stages:

data  collection,  data  pre-processing,  feature  selection,
model  optimization,  classification  modeling,  and  model
evaluation,  as  illustrated  in  Fig.  (4).

3.6.1. Step 1
Data Collection: Publicly available datasets, including

the  Kaggle  Diabetes  dataset  and  Pima  Indians  Diabetes
Dataset, are used.

3.6.2. Step 2
Data  Pre-processing:  This  includes  handling  missing

values,  encoding  categorical  variables,  feature  scaling,
and class balancing using SMOTE. Correlation analysis is
performed to remove redundant features.

3.6.3. Step 3
Step  3-  Feature  Selection:  SHAP  (SHapley  Additive

exPlanations)  ranks  feature  importance,  while  Particle
Swarm  Optimization  (PSO)  selects  the  most  relevant
subset  for  model  training.

3.6.4. Step 4
Step  4-  Model  Optimization:  Genetic  Algorithm  (GA)

and Bayesian Optimization refine model hyperparameters,
while  stratified  k-fold  cross-validation  (k=5)  ensures
model  reliability  and  reduces  overfitting.

3.6.5. Step 5
Step  5-  Classification  Models:  The  study  implements

Support  Vector  Machine  (SVM),  Artificial  Neural  Network
(ANN),  and  Random  Forest  (RF)  models,  along  with  their
optimized hybrid versions.

3.6.6. Step 6
Step 6- Model Evaluation: Performance is assessed using

accuracy,  precision,  recall,  F1-score,  and  AUC-ROC.
Additionally,  cross-validation  and  external  validation  with
PIDD  confirm  the  generalizability  of  the  hybrid  metaheu-
ristic approach.

4. MACHINE LEARNING MODELS

4.1. Artificial Neural Network (ANN)
ANN  is  a  type  of  model  that  imitates  brain  activity  to

process  data  and  produce  predictions.  It  is  modeled  after
biological neural networks. The three fundamental elements
include an output layer making the ultimate classifications
or predictions, an input layer taking in the input data, and
the  hidden  layers  carrying  out  the  intermediate  trans-
formations [54]. The layers are all connected with weights
that adjust with the training process to maximize accuracy.
During  the  learning  of  intricate  patterns,  every  neuron
calculates a weighted sum of the input along with utilizing
an  activation  function.  This  creates  non-linearity.  ANNs
reduce  prediction  errors  through  iterative  training  and
optimization  methods,  gradually  improving  performance.
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Fig. (4). Proposed framework for model.

For calculating a neuron i in the hidden layer, Eq. (6)
is used, which is as follows:

(6)

Where, xj is the input to the neuron, wij is the weight
associated with the inputs, bi is the biased term, and zi is
the weighted sum.

After  computing  the  weighted  sum,  an  activation
function is applied to introduce non-linearity to the model.
Common  activation  functions  include  Sigmoid,  which  is
shown in Eq. (7).

(7)

Output: The final output is computed by applying the
same  process  to  the  output  layer.  Training  an  ANN
involves  adjusting  the  weights  and  biases  using
backpropagation and an optimization method like gradient
descent.  The  goal  is  to  minimize  the  loss  function.  The
weights are updated using the following Eq. (8):

(8)

4.2. Bayesian Optimization
This method is used for optimizing problems where the

objective  function  is  difficult  to  evaluate  and  has  an
unknown  form.  It  is  especially  helpful  for  adjusting
hyperparameters  in  machine  learning.  The  surrogate
model, acquisition function, and objective function are the

𝑧𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑏𝑖

𝜎(𝑧) =
1

1+𝑒−𝑧

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂 ⋅
∂𝐿

∂𝑤𝑖𝑗
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three main elements of the process. A performance metric
(such  as  accuracy  or  loss)  that  depends  on
hyperparameters  x  is  represented  by  the  objective
function,  f(x).  This  model  uses  a  surrogate  model  to
approximate  the  function  based  on  previous  evaluations
because  evaluating  f(x)  is  computationally  costly.  To
choose the next point, the acquisition function, such as the
upper  confidence  bound  or  expected  improvement,
balances  exploration  and  exploitation.  The  algorithm
iteratively assesses f(x), updates the surrogate model, and
refines the solution with each iteration [55].

Let f(x) be the objective function where x is the set of
hyperparameters. Bayesian optimization aims to find the
value of x that minimizes f(x)  Eq. (9):

(9)

Since f(x) is expensive to compute, we model f(x) using
a Gaussian Process g(x), and then choose the next point to
evaluate  by  maximizing the acquisition function a(x)  Eq.
(10):

(10)

The  acquisition  function  guides  the  search  process,
deciding  where  to  explore  next  based  on  the  current
model's  uncertainty  and  predictions.

4.3. Random Forest
A  widely  used  ensemble  learning  algorithm  for

classification  and  regression  tasks,  Random  Forest  is
widely used for its robustness and ability to handle high-
dimensional data. Multiple decision trees are constructed
during training, and the ultimate prediction is made using
majority  voting  (for  classification)  or  averaging  (for
regression)  [56].  This  ensemble  approach  helps  reduce
overfitting and improves accuracy. Two fundamental types
of  randomness  are  used  to  build  each  Random  Forest
decision tree: Random feature selection, which considers
only  an  arbitrary  portion  of  features  at  each  split,  and
Bagging, which trains each tree on an arbitrary portion of
the data. This reduces variance and strengthens the model
by decorating the trees. Random feature selection further
increases  tree  diversity,  while  bootstrapping  guarantees
that every tree is exposed to various subsets of data. With
the  majority  voting  for  classification  or  averaging  for
regression,  Random Forest merges the predictions of  all
trees  in  the  final  step,  leading  to  a  more  robust  and
accurate  model  that  performs  very  well  on  complex
datasets  [57].

Let hi(x) be the prediction of the i-th decision tree for
input  x,  and  let  N  be  the  number  of  trees.  The  final
prediction  for  Random  Forest  is  the  majority  vote,  as
shown  in  Eq.  (11):

(11)

4.4. Genetic Algorithm
This is a natural selection-inspired enhancing method

used  to  identify  the  best  answers  in  challenging  search
spaces. It begins with a population of chromosomes, each

representing  a  potential  solution.  Genes,  which  are
decision variables and are frequently encoded as binary,
integer, or real values, make up chromosomes [58]. Each
person's  performance  is  assessed  by  a  fitness  function,
which  favours  those  with  higher  fitness  scores  to  guide
selection. To produce children, a selected group of people
(parents) go through crossover, exchanging chromosome
segments.  Small,  random  changes  are  introduced  by
mutation to preserve diversity. To effectively identify the
best  answers,  this  process  iterates  over  generations,
striking  a  balance  between  exploration  and  exploitation
[59].

The mathematical representation of this process is as
follows:

Chromosome: x = (x1,x2,...,xn), where each xi represents
a gene (decision variable), Fitness Function: f(x), where f
evaluates  the  quality  of  the  solution  x,  Crossover:  Two
parent  chromosomes  x1  and  x2  are  combined  to  form
offspring  xnew,  often  using  a  point  or  uniform  crossover,
and Mutation: With a small probability, some genes in xnew

are altered randomly.

4.5. Hybrid Metaheuristic Optimization Methods and
Experimentation Process

This  study  explores  three  hybrid  metaheuristic
optimization  techniques  that  enhance  classification
performance  for  diabetes  prediction  by  integrating  SHAP,
Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
and  Bayesian  Optimization  with  Support  Vector  Machine
(SVM), Artificial Neural Network (ANN), and Random Forest
(RF). Each method follows a structured experimental process
involving  feature  selection,  feature  refinement,  and
hyperparameter  tuning.

4.5.1. Hybrid Metaheuristic Optimization Integrating
SVM  with  SHAP,  PSO,  GA,  and  Bayesian
Optimization

In  the  first  approach,  the  hybrid  metaheuristic
optimization  integrates  SVM  with  SHAP,  PSO,  GA,  and
Bayesian Optimization to optimize diabetes classification.
The  process  begins  with  SHAP,  which  analyzes  feature
importance  using  a  linear  SVM  model,  allowing  the
selection  of  the  most  relevant  features.  These  selected
features are then refined using PSO, where each particle
represents a subset of features and is evaluated based on
the AUC score  of  an  SVM model  trained on that  subset.
PSO  iteratively  converges  to  the  best  feature  subset,
improving classification performance. Next, GA is used to
optimize  hyperparameters,  such  as  C  and  gamma,  by
evolving  parameter  sets  across  generations.  Bayesian
Optimization  is  then  applied  to  fine-tune  these
hyperparameters,  balancing exploration and exploitation
to  maximize  the  AUC  score.  The  final  optimized  SVM
model,  trained  with  an  RBF kernel,  is  evaluated  using  a
Receiver  Operating  Characteristic  (ROC)  curve  and
classification  metrics,  including  accuracy,  precision,
recall,  and  F1-score

𝑥∗ = argmin𝑓(𝑥)

𝑥𝑛𝑒𝑥𝑡 = argmax𝑎(𝑥)

𝐻(𝑥) = mode(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑁(𝑥))
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4.5.1.1. Experimental Process

4.5.1.1.1. Feature Selection Using SHAP
A  linear  SVM  model  is  trained,  and  SHAP  (SHapley

Additive exPlanations) values are computed to determine
feature importance.

Only  the  most  significant  features  are  selected  to
reduce  dimensionality  and  improve  efficiency.

4.5.1.1.2. Feature Refinement Using PSO
Each particle represents a subset of features, and the

fitness of each subset is evaluated using the AUC score of
an SVM trained on it.

PSO iteratively converges toward the optimal feature
subset for better classification.

4.5.1.1.3. Hyperparameter Optimization Using GA
The  genetic  algorithm  is  applied  to  optimize  SVM

hyperparameters  (C  and  gamma).
The  best  hyperparameter  sets  are  selected  through

iterative  evolution,  enhancing  classification  accuracy.

4.5.1.1.4. Fine-tuning with Bayesian Optimization
Bayesian  Optimization  further  refines  the

hyperparameters,  balancing exploration and exploitation
to maximize AUC.

4.5.1.1.5. Model Evaluation
The final optimized SVM model (with an RBF kernel) is

trained  on  the  selected  features  and  fine-tuned
hyperparameters.

Performance  is  assessed  using  a  Receiver  Operating
Characteristic  (ROC)  curve  and  classification  metrics,
including  precision,  recall,  F1-score,  and  accuracy.

4.5.2. Hybrid Metaheuristic Optimization Integrating
ANN  with  SHAP,  PSO,  GA,  and  Bayesian
Optimization

The  second  approach  enhances  ANN  performance
using  a  similar  hybrid  metaheuristic  optimization
framework.  Initially,  SHAP  is  employed  to  rank  feature
importance  in  a  linear  SVM model,  selecting  the  top  10
most relevant features. These features are further refined
using PSO, where particles represent feature subsets, and
their fitness is determined based on the AUC score of an
ANN trained on them. Through iterative optimization, PSO
identifies the best-performing feature subset.  GA is then
utilized to optimize key ANN hyperparameters such as the
number  of  neurons,  batch  size,  and  learning  rate  by
evolving  parameter  combinations  over  multiple
generations.  Bayesian  Optimization  further  fine-tunes
these  hyperparameters  to  ensure  optimal  performance.
The ANN model, trained with the optimized features and
hyperparameters,  is  assessed  using  an  AUC  score,  ROC
curve,  and  classification  report  summarizing  accuracy,
precision,  recall,  and  F1-score.

4.5.2.1. Experimental Process

4.5.2.1.1. Feature Selection using SHAP
A linear SVM model  is  trained,  and SHAP values are

computed to rank feature importance.
The top 10 most  significant  features  are selected for

better model efficiency.

4.5.2.1.2. Feature Refinement using PSO
Each particle represents a subset of features, and its

fitness is determined by the AUC score of an ANN trained
on that subset.

PSO iteratively searches for the optimal feature subset
to enhance predictive performance.

4.5.2.1.3. Hyperparameter Optimization using GA
The  Genetic  Algorithm  is  employed  to  optimize  key

ANN  parameters  such  as  the  number  of  neurons,  batch
size, and learning rate.

The most  effective  hyperparameter  combinations  are
selected through evolutionary processes.

4.5.2.1.4. Fine-tuning with Bayesian Optimization
Bayesian  Optimization  further  fine-tunes  ANN

hyperparameters  by  balancing  exploration  and
exploitation.

4.5.2.1.5. Model Evaluation
The  ANN  model  is  trained  using  the  optimal

hyperparameters  and  PSO-optimized  features.

Performance is  measured using the  ROC curve,  AUC
score,  and a classification report  summarizing accuracy,
precision, recall, and F1-score.

4.5.3. Hybrid Metaheuristic Optimization Integrating
Random  Forest  with  SHAP,  PSO,  GA,  and  Bayesian
Optimization

The  third  approach  integrates  Random  Forest  with
SHAP,  PSO,  GA,  and  Bayesian  Optimization  to  enhance
diabetes prediction. SHAP is first applied to a linear SVM
model to determine feature importance, selecting the top
10  influential  features.  These  features  undergo  further
refinement through PSO, where each particle represents a
subset, and its fitness is evaluated using the AUC score of
a  Random  Forest  model  trained  on  that  subset.  PSO
iteratively optimizes the feature selection process, leading
to improved classification accuracy. GA is then applied to
fine-tune  Random  Forest  hyperparameters,  such  as  the
number of trees and maximum depth, by evolving optimal
parameter  sets.  Finally,  Bayesian  Optimization  further
adjusts these hyperparameters, balancing exploration and
exploitation for improved AUC scores. The final optimized
Random Forest model is evaluated using the ROC curve,
AUC  score,  and  a  classification  report  highlighting
accuracy,  precision,  recall,  and  F1-score.
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4.5.3.1. Experimental Process

4.5.3.1.1. Feature Selection Using SHAP
A linear SVM model  is  trained,  and SHAP values are

calculated to determine feature importance.
The  top  10  most  influential  features  are  selected  to

reduce dimensionality while preserving model accuracy.

4.5.3.1.2. Feature Refinement Using PSO
Each particle represents a subset of features, and its

fitness is evaluated based on the AUC score of a Random
Forest model trained on that subset.

PSO iteratively optimizes the feature subset to improve
classification performance.

4.5.3.1.3. Hyperparameter Optimization Using GA
Genetic  Algorithm  optimizes  Random  Forest

hyperparameters,  such  as  the  number  of  trees  and
maximum  depth.

Through  multiple  generations,  GA  selects  the  best-
performing  hyperparameter  combinations.

4.5.3.1.4. Fine-tuning with Bayesian Optimization
Bayesian  Optimization  further  refines

hyperparameters  by  striking  a  balance  between
exploration  and  exploitation  to  maximize  AUC  scores.

4.5.3.1.5. Model Evaluation
The  final  Random  Forest  model  is  trained  using  the

optimized features and fine-tuned hyperparameters.
Performance  is  assessed  using  the  ROC  curve,  AUC

score,  and  a  classification  report  detailing  precision,
recall,  F1  score,  and  accuracy.

5. RESULTS AND DISCUSSION
This  section  presents  and  discusses  the  outcomes

obtained  from  the  experimental  setup  using  various
models  for  diabetes  prediction.

5.1. Correlation Coefficient Analysis

The correlation matrix provides valuable insights into
the relationships between features in the diabetes dataset
using  Pearson’s  correlation  coefficient  (Fig.  5).  A  value
close  to  +1  signifies  a  strong  positive  correlation,  -1
represents a strong negative correlation, and 0 indicates
no  correlation.  The  heatmap,  which  illustrates  feature
correlations  within  the  dataset  after  pre-processing,
visually represents these relationships. Darker shades in
the  heatmap  indicate  stronger  correlations  between
features.  Key  observations  reveal  strong  positive
correlations  between  features,  such  as  polyuria  and
polydipsia,  as  well  as  sudden weight  loss  and weakness,
suggesting their tendency to occur together. Conversely,
features  like  age  and  alopecia  or  obesity  and  partial

paresis  exhibit  weak  or  negative  correlations,  while
others,  such  as  visual  blurring  and  genital  thrush,  show
little  to  no  association.  The  rightmost  column  of  the
correlation  matrix  highlights  the  relationship  of  each
feature  with  the  diabetes  outcome,  where  polyuria,
polydipsia, and partial paresis demonstrate strong positive
correlations,  making  them  crucial  predictors.  The
correlation matrix is instrumental in feature selection, as
it  helps  identify  redundant  variables,  minimize
multicollinearity,  and  enhance  model  efficiency.  By
eliminating  highly  correlated  features,  the  risk  of
overfitting is reduced, ultimately leading to more accurate
diabetes predictions.

5.2.  Performance  Evaluation  of  Machine  Learning
Models

A  comprehensive  comparison  between  standard
machine learning models (SVM, ANN, and RF) and their
hybrid optimized counterparts (Hybrid-SVM, Hybrid-ANN,
and Hybrid-RF) was carried out to assess improvements in
predictive performance. Key evaluation metrics, including
accuracy, precision, recall, F1-score, and AUC-ROC, were
analyzed  both  before  and  after  optimization  to  highlight
the impact of the applied hybrid techniques. To ensure the
reliability and generalizability of the models, stratified k-
fold  cross-validation  was  implemented,  allowing
performance  assessment  across  multiple  subsets  of  the
dataset and reducing bias. Additionally, external validation
using the Pima Indians Diabetes dataset was performed to
verify  model  robustness  beyond  the  Kaggle  dataset,
ensuring  that  the  optimized  models  maintain  high
performance  across  diverse  data  sources.  The  results
demonstrated  that  hybrid-optimized  models  consistently
outperformed  their  standard  counterparts,  highlighting
the effectiveness of optimization techniques in improving
diabetes prediction accuracy (Table 7).

The optimized models exhibited a notable performance
boost compared to their  non-optimized versions.  Hybrid-
SVM  and  Hybrid-ANN  demonstrated  significant
improvements,  while  hybrid-RF  was  the  most  effective
model, achieving 99.0% accuracy and an AUC-ROC of 1.00
(Figs. 6-7), indicating exceptional predictive capability for
diabetes diagnosis. Furthermore, the application of cross-
validation  ensured  that  the  models  maintained
generalizability and robustness, effectively minimizing the
risk of overfitting across different dataset partitions.

External Validation on PIDD Dataset
To evaluate the robustness and generalizability of the

models,  they  were  tested  on  the  Pima  Indians  Diabetes
dataset.  The  results  confirmed  that  the  hybrid  models
maintained  high  predictive  performance  even  on  an
independent dataset,  further validating the effectiveness
of the hybrid optimization approach (Table 8).
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Fig. (5). Correlation matrix of diabetes.

Fig. (6). ROC curve before and after optimization on the diabetes dataset.
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Fig. (7). ROC curve before and after optimization on the PIMA dataset.

Table 7. A comparative analysis of the models before and after optimization on the dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC

SVM (without optimization) 80.0 79.0 80.5 82.7 0.83

ANN (without optimization) 82.2 80.8 81.0 84.4 0.84

RF (without optimization) 85.0 82.2 85.8 86.2 0.88

Hybrid-SVM (optimized after cross-validation) 94.0 95.2 94.4 94.8 0.92

Hybrid-ANN (optimized after cross-validation) 93.0 92.8 93.6 93.2 0.96

Hybrid-RF (optimized after cross-validation) 99.0 93.9 92.5 93.2 1.00

Table 8. Performance metrics comparison on PIDD dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC

SVM (without optimization) 82.5 81.2 80.9 81.0 0.85

ANN (without optimization) 84.3 83.0 83.2 83.1 0.87

RF (without optimization) 87.1 85.8 86.2 86.0 0.90

Hybrid-SVM (optimized after cross-validation) 89.0 90.0 89.3 89.6 0.92

Hybrid-ANN (optimized after cross-validation) 89.8 89.5 90.1 89.8 0.94

Hybrid-RF (optimized after cross-validation) 99.0 98.7 99.5 99.1 1.00
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The  results  of  standard  machine  learning  models
(SVM,  ANN,  and  RF)  and  their  hybrid  optimized
counterparts (Hybrid-SVM, Hybrid-ANN, and Hybrid-RF)
were  evaluated  to  assess  improvements  in  predictive
performance  by  considering  the  following  aspects  [60].

•  Accuracy:  Measures  the  proportion  of  correct
predictions.

Accuracy=  (True  Positive  +  True  Negative)  /  (True
Positive  +  True  Negative  +  False  Positive  +  False
Negative)

•  Precision:  Evaluates  the  ability  to  avoid  labeling
negative  cases  as  positive.

Precision=  True  Positive  /  (True  Positive  +  False
Positive)

•  Recall:  Measures  the  ability  to  correctly  identify
positive  cases.

Recall=  True  Positive  /  (True  Positive  +  False
Negative)

• F1 Score: Provides a harmonic mean of precision and
recall.

F1-Score=  2  *  (Precision  *  Recall)  /  (Precision  +
Recall)

CONCLUSION
Diabetes  is  a  chronic  disease  affecting  millions

worldwide.  This  study  evaluated  the  effectiveness  of
hybrid metaheuristic optimization techniques in enhancing
diabetes  prediction  using  machine  learning  models.  A
comprehensive comparison between conventional models
(SVM,  ANN,  and  RF)  and  their  optimized  counterparts
(Hybrid-SVM, Hybrid-ANN, and Hybrid-RF) demonstrated
notable improvements in classification performance. The
integration of feature selection using SHAP and PSO, class
balancing through SMOTE, and performance validation via
stratified k-fold cross-validation contributed to enhanced
accuracy,  precision,  and  generalizability.  Among  the
optimized  models,  Hybrid-RF  achieved  the  highest
accuracy  of  99.0%  with  an  AUC-ROC  score  of  1.00,
underscoring the effectiveness of the proposed approach.
Despite these advancements, several limitations must be
considered.

STUDY LIMITATIONS
The study relies on publicly available datasets (Kaggle

Diabetes  dataset  and  Pima  Indians  Diabetes  dataset),
which may not fully capture diverse populations due to the
absence  of  detailed  patient  demographics  and  clinical
variables. This limitation may affect the generalizability of
the model. Additionally, feature selection using SHAP and
PSO, while improving model efficiency, may inadvertently
exclude  subtle  yet  clinically  relevant  features.  Another
challenge is the potential dataset bias, which has not been
explicitly  assessed  and  could  influence  the  model’s
predictive  reliability.  Moreover,  the  proposed model  has
not  undergone  real-world  clinical  validation,  raising
concerns  about  its  practical  applicability,  physician
interpretability, and seamless integration into healthcare
systems.  The  computational  complexity  associated  with

hybrid  metaheuristic  optimization  also  increases
processing requirements, making real-time deployment in
resource-constrained environments challenging. Although
5-fold cross-validation enhances performance estimation,
further  external  validation  using  larger,  real-world
hospital datasets is crucial to confirm the robustness and
clinical utility of the model.

Future  research  should  address  these  limitations  by
incorporating  more  diverse  and  extensive  datasets,
conducting  real-world  testing,  and  optimizing
computational efficiency. Additionally, exploring federated
learning  can  improve  model  generalizability  while
maintaining  data  privacy.  The  proposed  framework  can
also  be  extended to  predict  the  likelihood of  diseases  at
early  stages.  In  the  future,  mobile  and  web  applications
based on this model could assist  healthcare providers in
early  diabetes  detection  and  prediction,  ultimately
improving patient outcomes and supporting timely medical
interventions.
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